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The root of the present GPF group is the Theoretical physics
project (of at-the-time Ministry of Science) that existed 50 years
ago and had two parts: Quantum Mechanics and QFT/Gravity.
The leading researcher of the QM subproject was Zvonko Marić
while the QFT/GR part was led by Dorde Živanović.
(This is the large-scale framework as I remember it: the
accurate details probably differ.)

At the time when I fully joined, the group was led by the young
and enthusiastic trio Milutin Blagojević - Dorde Šijački - Dragan
Popović, who was the youngest. My main (formal) relation to
Dragan was that for several years I did tutorials for the course
Particle physics which he had taught. The group had regular
seminars on Fridays (at 10 a.m.!), where a lot was learned and
discussed, and workshops like the Danube workshop in the
photo (on which your PhD advisors are just babies).
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Geometry & Physics 1

The first and most important unification of geometry and
physics was Einstein’s theory of General Relativity.

It created the yet-lasting paradigm in theoretical physics that
fundamental physics should be expressed as geometry
(or through symmetries?)

Some of the consequences of Einstein’s bold assumptions
about the nature of spacetime are still, 100 years later, being
experimentally verified, like gravitational waves (2015/2016)
and black holes (2012/2022).

But the big question still is, how to push gravity / geometry /
symmetry relation forward, to quantum physics?

Maja Burić Geometry & Physics



Geometry & Physics 1

Einstein used his intuition to recognise the main physical
principle(s), and then applied mathematics (however unusual at
the time) to extend standard classical nonrelativistic physics.

Today too, we are trying to implement our, gained in the
meanwhile, intuition about the quantum world, and/or develop
mathematics, in order to describe spacetime and gravity on
very small scales. Unfortunately, at the moment, our intuition
about quantum gravity is not based on the experimental facts.

The basic principle used in GR is the equivalence principle; it
can be formulated in several similar ways. According to MB,
one can define its following versions.
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Geometry & Physics 1

EP: a non-inertial reference system cannot be locally
experimentally distinguished from the gravitational field

EP’: the physics laws in s freely falling reference frame are the
same as in special relativity
(or, Poincaré group is the local group of symmetry)

shift to non-inertial reference systems:
GRP: the form of the laws of physics is the same in all
reference frames

GCP: the form of the laws of physics is independent of the
choice of coordinates

Equivalence principle is mostly about symmetries, but what it
states as well is the classical limit. What is the corresponding
mathematics?
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Geometry & Physics 1: Riemannian geometry LL

Physical fields like metric, curvature etc. are tensors with
respect to coordinate transformations, e.g. gµν = ∂x ′ρ

∂xµ
∂x ′σ

∂xν g′
ρσ .

Covariant derivation of tensors is done via the Christoffel
connection, Γµρσ = 1

2 gµν
(
∂gνρ

∂xσ + ∂gνσ

∂xρ − ∂gρσ

∂xν

)
.

Einstein equations

Rµν − 1
2

Rgµν = 8πGTµν

follow from the Einstein-Hilbert action

S = − 1
16πG

∫
d4x

√
|g|R + Smatter .

Geodesics, i.e. trajectories of massive and massless particles,
provide intuition about properties of a particular space.
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Geometry & Physics 1: Differential geometry HE
Differential geometry gives a more general framework.
One introduces tangent space of vectors eα, cotangent space
of 1-forms θα; tensors are defined by tensor products.

Covariant derivative is given by a connection 1-form ωα
β, which

defines torsion and curvature as

Θα = dθα + ωα
β ∧ θβ , Ωα

β = dωα
β + ωα

γ ∧ ωγ
β .

When torsion vanishes and connection is metric-compatible,
ωα

β reduces to the Christoffel connection.

Freely falling frame is a set of linearly independent orthonormal
vector fields {eα}; elements the invariance group are the local
Lorentz rotations of the set of ON frames, e′

α = Λβ
αeβ .

This description perhaps describes better the principle of local
invariance, PE’. Also, properties of space are more naturally
expressed through behavior of fields (scalar, gauge, etc.) than
point particles?
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Geometry & Physics 2: Fiber bundles HE
Gauge fields are also expressed in geometric language: the
corresponding structure is that of a fiber bundle.
Fiber bundle is a manifold which is locally a direct product of a
base space (in this case, spacetime) and a fiber (for principal
bundle, a Lie group) + projection & properties.

In order to define paralell transport on the base manifold, one
introduces connection ω ≡ A = Aµdxµ, i.e. vector potential,
and curvature, Ω ≡ F dA + A ∧ A, equal to the field strength.

The Yang-Mills action is then

SYM = −1
4

∫
d4x FµνFµν = −1

4

∫
Ω ∧∗ Ω ,

quadratic in curvature, unlike the Einstein-Hilbert action.

What happens when we unify or connect the geometric
descriptions of gravity and gauge fields?
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Geometry & Physics 2: Kaluza-Klein

Kaluza and Klein first proposed a unification of gravity with
electrodynamics as a theory of gravity in 5d space (xµ, y),
where coordinate y belongs to a circle of small radius r .
Assuming

ḡMN =

(
gµν + κ2AµAν κAµ

κAν 1

)
.

and the ‘cylinder condition’ that fields depend only on xµ, the
5d Einstein-Hilbert action becomes

S = −
∫

d4x
√
|g|
(

R
16πG

+
1
4

FµνFµν

)
Moreover, under transformations y ′ = y + f (x), x ′ = x ′(x), the

vector potential transforms as A′
µ = Aµ + ∂µf .

However, this simple model is not GR in 5d, as one cannot
generally assume ḡ55 = 1, nor neglect the dependence on y .
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Geometry & Physics 2: Kaluza-Klein

Addition of a scalar field ϕ(x) gives a correct ansatz

ḡMN =

(
gµν + κ2ϕ2AµAν κϕ2Aµ

κϕ2Aν ϕ2

)

i.e. the frame

θα = eα
µdxµ , θ5 = κAµdxµ + ϕdy .

The implied 4d action

S = −
∫

d4x
√
|g|ϕ

(
R

16πG
+

1
4
ϕ2FµνFµν +

3
2κ2

∂µϕ∂µϕ

ϕ2

)
gives more complicated equations of motion.

Dependence on y means expansion of fields in modes einy/r

and a discussion of vacuum vs. excited states of geometry.
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Geometry & Physics 2: Kaluza-Klein

The idea of KK to unify gravity with gauge theories was very
influential in theoretical physics: it was revived after discovery
of strong and weak forces, and extra dimensions were used to
propose different unifying schemes and compactification
scenarios in unified field theories, supergravity, string theory.

Complications which appear when extra dimensions describe
nonabelian gauge theories can be circumvented by adding, to
the Einstein-Hilbert Lagrangian, cosmological term, R2, torsion,
or matter. In any case, the infinite tower of heavy field modes
remains, while some other problems can be solved.

Another realisation of the KK idea can be done within
noncommutative geometry, where extra dimensions are finite
matrix spaces.
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Geometry & Physics 3: Noncommutative geometry

Noncommutative geometry is ‘pointless’, that is, points xµ are
replaced by noncommutative objects x̂µ (matrices, operators).
Scalar fields are functions of x̂µ.

Noncommutative differential geometry with notions of
derivative, differential, tensor; connection, curvature, Laplacian,
etc. can be defined in several different ways.

These notions allow to define e.g. continuity on discrete
spaces, like for example the space Mn of n × n matrices. It is
clear that, whatever we take as a set of coordinates on this
space, they will have discrete and finite spectra. One can also
define the Laplacian and the Laplace equation: the scalar field
then has a finite number of modes, upper-limited by n2.
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Geometry & Physics 3: A simple matrix geometry

Let us introduce geometry of the Mn space in some detail.
Denote by λa n2 − 1 matrices which are generators of the
SU(n) group. As λaλb = 1

2 Cc
abλc +

1
2 dc

abλc − 1
n gab ,

they can be taken as coordinates (or better, momenta) in Mn.

The frame can be defined as follows:

eaf = [λa, f ] , df = (eaf )θa = −[θ, f ] , [f , θa] = 0 , [ea,eb] = Cc
abec ,

where θ = −λaθ
a is the 1-form, dθ + θ ∧ θ = 0.

If we consider connections ω for SU(n) transformations (given
by unitary matrices g) and decomposition

ω′ = g−1ωg + g−1dg = θ′ + ϕ′

we find that θ′ = θ while the scalar ϕ transforms in the adjoint
representation, ϕ′ = g−1ϕg.
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Geometry & Physics 3: Noncommutative Kaluza-Klein
Using Mn and its geometry given above, one can define a
noncommutative version of KK.

Define the extended spacetime as a product V ⊗ Mn, where V
is commutative, e.g. Minkowski space. Differential geometry is
given by the frame {θα, θa}, α = 0,1,2,3, a = 1, . . .n2 − 1,

d = dh + dv = θαeα + θaea .

The connection (not the frame, as before), decomposed as

ω = ωh + ωv = A + θ + ϕ

gives, for elements of the curvature Ω = dω + ω ∧ ω,

Ωαβ = Fαβ , Ωαa = Dαϕa , Ωab = [ϕa, ϕb]− Cc
abϕc

The corresponding Yang-Mills action is a sum of YM and
Higgs action with quartic Higgs potential:

S = −1
4

Tr
(
ΩαβΩ

αβ + 2ΩαaΩ
αa +ΩabΩ

ab
)
.
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Geometry & Physics 3: Noncommutative SM

This example shows that noncommutative geometry gives
additional possibilities for ‘discrete’ versions of the Kaluza-Klein
mechanism. There are many models. A typical feature is that
the extended space is a product of commutative and finite
spaces, which gives finite number of KK modes.

The best known model is the Spectral Standard Model of
Connes and Chamseddine, based on the spectral triple.
Spectral triple (A,H,D) consists of the algebra of functions,
Hilbert space representation of spinors and the Dirac operator.
A careful definition of the finite extension (and corresponding
gauge+matter action) allows to introduce all fields of the SM.

Geometric spirit of this model is also in generalisation of the
‘reconstruction theorem’, which roughly says that, in the
commutative case, knowing (A,H,D) one can reconstruct
properties of the initial manifold.
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Geometry & Physics 3: Noncommutative gravity

Our subgroup of group at the Faculty of Physics is not working,
at present, on noncommutative particle physics models, but
rather on noncommutative gravity or quantum spacetimes.

The idea is to quantise curved spacetimes themselves,
representing coordinates xµ by operators. The corresponding
geometry is realised using the formalism mentioned before.

The latest results are on quantisation of the de Sitter and
Anti-de Sitter spacetimes and analysis of equation of motion /
propagators for real scalar fields on these fuzzy (A)dS spaces.
A good property obtained is that, besides the metric, the scalar
field modes and the propagator have the correct classical limit,
that is, the correspondence principle is verified for fields too.

In dimensions d > 2, noncommutative structure introduces
additional, ‘internal’ degrees of freedom.
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